
ORIGINAL ARTICLE

Federated learning model for credit card fraud detection with data
balancing techniques

Mustafa Abdul Salam1,2
• Khaled M. Fouad1,3 • Doaa L. Elbably1 • Salah M. Elsayed1,4

Received: 16 August 2023 / Accepted: 13 December 2023
� The Author(s) 2024

Abstract
In recent years, credit card transaction fraud has resulted in massive losses for both consumers and banks. Subsequently,

both cardholders and banks need a strong fraud detection system to reduce cardholder losses. Credit card fraud detection

(CCFD) is an important method of fraud prevention. However, there are many challenges in developing an ideal fraud

detection system for banks. First off, due to data security and privacy concerns, various banks and other financial

institutions are typically not permitted to exchange their transaction datasets. These issues make traditional systems find it

difficult to learn and detect fraud depictions. Therefore, this paper proposes federated learning for CCFD over different

frameworks (TensorFlow federated, PyTorch). Second, there is a significant imbalance in credit card transactions across all

banks, with a small percentage of fraudulent transactions outweighing the majority of valid ones. In order to demonstrate

the urgent need for a comprehensive investigation of class imbalance management techniques to develop a powerful model

to identify fraudulent transactions, the dataset must be balanced. In order to address the issue of class imbalance, this study

also seeks to give a comparative analysis of several individual and hybrid resampling techniques. In several experimental

studies, the effectiveness of various resampling techniques in combination with classification approaches has been com-

pared. In this study, it is found that the hybrid resampling methods perform well for machine learning classification models

compared to deep learning classification models. The experimental results show that the best accuracy for the Random

Forest (RF); Logistic Regression; K-Nearest Neighbors (KNN); Decision Tree (DT), and Gaussian Naive Bayes (NB)

classifiers are 99,99%; 94,61%; 99.96%; 99,98%, and 91,47%, respectively. The comparative results show that the RF

outperforms with high performance parameters (accuracy, recall, precision and f score) better than NB; RF; DT and KNN.

RF achieve the minimum loss values with all resampling techniques, and the results, when utilizing the proposed models on

the entire skewed dataset, achieved preferable outcomes to the unbalanced dataset. Furthermore, the PyTorch framework

achieves higher prediction accuracy for the federated learning model than the TensorFlow federated framework but with

more computational time.

Keywords Credit card fraud detection (CCFD) � Federated learning � Data privacy � Class imbalance � Undersampling �
Oversampling

& Mustafa Abdul Salam

mustafa.abdo@fci.bu.edu.eg; mustafa.abdo@aou.edu.eg

1 Faculty of Computers and Artificial Intelligence, Benha

University, Benha, Egypt

2 Faculty of Computer Studies, Arab Open University, Cairo,

Egypt

3 Faculty of Computer Science and Engineering, New

Mansoura University, Mansoura, Egypt

4 Higher Institute for Computers & Information Technology,

ElShorouk, Cairo, Egypt

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-023-09410-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-1673-6947
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-023-09410-2&domain=pdf
https://doi.org/10.1007/s00521-023-09410-2

1 Introduction

Credit card transactions have significantly increased in

recent years due to the quick development of electronic

services, including e-commerce, electronic banking,

mobile payments, and the widespread use of credit cards.

Without strict verification and oversight, widespread credit

card uses, and many transaction situations will result in

billions of dollars in losses from credit card fraud. It is

challenging to calculate the loss accurately. However,

according to the Nilson Report [1], Fraud losses in all other

countries totaled 18.39 billion dollars in 2018. This com-

pares to 14.99 billion dollars in 2017. Total payment card

volume worldwide is expected to reach 57.080 $ trillion in

2023, with gross card fraud reaching 35.67 $ billion. This

number is expected to increase significantly in the coming

years. Global gross losses from card fraud will reach 40 $

billion by 2027.

Fraudulent transactions may be done using either a

stolen card from internal or external sources or false

information about credit cards [2]. Activities of credit card

fraud detection have been widely discussed by multiple

researchers [3–7]. Most of these proposed algorithms have

used supervised machine learning models to recognize

whether a transaction is fraudulent or legitimate. Detecting

credit card fraud is an important step in stopping fraud

incidents. However, there are main challenges in the

development of an ideal fraud detection system for banks,

such as dataset insufficiency, and skewed distribution.

Dataset insufficiency: The lack of available public

datasets is the main issue associated with FDS. Data

security and privacy concerns-imposed barriers to data

sharing for different banks. Therefore, in this study, a

federated learning approach has been deployed to allow

different banks to exchange datasets to construct an effi-

cient fraud detection model without disclosing the privacy

of each bank’s clients. The federated learning strategy aims

to build a global integral model constructed by aggregating

locally computed updates of the shared fraud detection

model on distributed datasets without sharing raw data

while preserving data privacy [8, 9].

Skewed distribution (class imbalance): All banks’ credit

card transactions are very imbalanced; just a small per-

centage of them involve fraud, while the majority involve

legitimate purchases. In the majority of cases, 98% percent

of transactions are normal, while less than 2% percent of

transactions are fraudulent. In just this situation, it is par-

ticularly challenging for predictive modeling algorithms to

find patterns in the data from the minority class. As a result,

classifier performance is significantly impacted by skewed

class distribution. The problem of class imbalance that

occurred in several domains has been addressed in several

ways [10–13]. Figure 1 depicts a block diagram of the FDS

with an unbalanced dataset.

1.1 Motivation and contributions

The following resampling methods have been suggested as

a preliminary step in processing the credit card transaction

unbalanced dataset: the Oversampling techniques such as

minority oversampling technique (Smote); Adaptive syn-

thetic sampling (AdaSyn), and Random oversampling

(ROS). The undersampling techniques like random under-

sampling (RUS).

According to previous studies, several class balance

approaches have been shown to cause classification algo-

rithms to perform with varying degrees of accuracy. This

prompts us to select several classification algorithms to

compare their performance after using data balancing

strategies. The generated dataset is utilized for training and

testing various conventional machine learning and deep

learning algorithms after applying the balanced distribution

of the imbalanced class using the resampling approaches

outlined above. The following list represents the machine

learning and deep learning algorithms used in this study:

RF; DT; NB; KNN; LR, and Convolutional Neural Net-

work (CNN).

Next, comparative research on the effect of resampling

techniques on the effectiveness of classification algorithms

has been conducted. Also, the appropriate techniques for

handling data imbalance problems are proposed. Finally, a

federated learning model over multiple frameworks to

preserve the data security and privacy challenges has been

built, as shown in Fig. 2.

Our contribution is summarized as.

Firstly, we applied the individual and hybrid resampling

techniques with the common of machine learning classi-

fiers, then to ensure the performance of the hybrid resam-

pling techniques with machine learning, we compared the

proposed hybrid approach with six of the state of arts.

Secondly, we applied the individual and hybrid resam-

pling techniques with the CNN classifier, then to ensure the

performance of the individual resampling techniques with

CNN, we compared the proposed hybrid approach with two

state-of-the-art.

Thirdly, after handling the unbalanced data, we built the

federated learning model to handle the big issue of credit

card fraud detection that learn the model with the training

data distributed on their local database. With this approach,

financial institutions can collectively reap the benefits of a

shared global model, which has seen more fraud than each

bank alone, without sharing the dataset.

Finally, we executed the proposed federated learning

model with different optimization techniques and with

several batch sizes over different platforms (Pytorch and

Neural Computing and Applications

123

Fig. 1 Block diagram of CCFD

model with an unbalanced

dataset

Fig. 2 Federated learning

model for FDS

Neural Computing and Applications

123

Tensorflow federated) to get the best platform according to

accuracy and computation time.

The following sections of this paper are presented as

follows: In Sect. 2 is the review of all previous works of

federated learning models to identify the fraudulent trans-

actions, imbalance classification problem of CCFD and the

integration between them. Section 3 shows a background

of all used resampling methods. In Sect. 4, the details of

the proposed hybrid resampling approaches with pseu-

docode of each approach. In Sect. 5, the main steps of the

proposed federated learning model. The experimental

results of all proposed hybrid resampling approaches using

machine learning classifications and CNN classifier on

benchmark dataset and the effectiveness of the federated

learning model on different platforms were explained in

Sect. 5. Finally, in Sect. 6 this paper is concluded and

briefly suggestion our future works.

2 Related work

Fraud detection algorithms use machine learning to effi-

ciently identify fraudulent transactions. Most proposed

CCFDS are built using centralized learning models, and a

handful of researchers are building federated learning

models to tackle fraud detection. The supervised, unsu-

pervised, and semi-supervised learning models use cen-

tralized learning strategies [14–18]. Fraud detection is

viewed as a classification issue for a set of card transactions

in data mining tasks. A comparison study on CCFD [19]

has been by using supervised approaches such as Extreme

Gradient Boosting (XGB); DT; RF; LR; K-NN, and SVM

and unsupervised approaches such as Generative Adver-

sarial Networks (GAN); Auto-Encoder (AE), Restricted

Boltzmann Machine (RBM), and One-Class SVM

(OCSVM). The authors [20] evaluated the performances of

various ML techniques like SVM; KNN; DT, and NB for

CCFD.

The Federated learning (FL) concept has an important

role in the banking industry, especially in the fraud

detection of credit cards. With the development of credit

card fraud detection systems, there is a problem of data

security and privacy protection, and FL will solve this

problem [21]. This paper proposed a federated Neural

Network Model. As a proper deep-learning model for

identifying credit card fraud. However, it is unconcerned

about the issue of privacy. In [22], this work applies a

federated learning model for detecting Credit card fraud-

ulence. This paper evaluates CCFD with a federated

learning model for a real-time dataset. Compared to cen-

tralized deep learning models, this increases by the AUC

test average of 10%.

In [23], the authors proposed two unsupervised deep

learning models (AE; RBM) to identify credit card fraud

using only a small number of parameters. For AE and

RBM, the accuracy rate of federated deep learning models

is 88% and 94% percent, respectively, while for centralized

deep learning models, it is 99%and 92%percent [24]. This

work introduces a new protocol that is an efficient and

privacy-preserving strategy based on FL with a stochastic

gradient descent method by combining differential privacy

with homomorphic encryption. The authors [25] surveyed

various types, including behavioral fraud, application

fraud, counterfeit fraud, theft fraud, and bankruptcy fraud.

Furthermore, the performance metrics for fraudulence are

predicted by a decision tree, clustering algorithms, pairwise

matching, neural network, and genetic algorithms. In order

to combine the features in local and global models and

obtain high performance with minimal communication

expense, a feature fusion technique is developed [26].

Ref. [24] This work introduces a new protocol that is an

efficient and privacy-preserving strategy based on FL with

a stochastic gradient descent method by combining dif-

ferential privacy with homomorphic encryption. The

authors [25] surveyed various types, including behavioral

fraud, application fraud, counterfeit fraud, theft fraud, and

bankruptcy fraud. Furthermore, the performance metrics

for fraudulence are predicted by a decision tree, Suvasini,

et al. [27] presented comparative research on credit card

fraud detection utilizing seven widely used classification

Fig. 3 Main resampling Techniques [38]

Neural Computing and Applications

123

techniques. The experimental findings demonstrated that,

for real-time datasets, the decision tree classifier outper-

forms the other classifiers at predicting credit card fraud.

However, the SVM model still detects fewer fraudulent

transactions than the decision tree model does. Mohd [28]

developed the genetic algorithm and scatter search tech-

niques. The credit card limit is assumed and used as the

cost of misclassification. This proposed technique deter-

mines the credit card’s available limit based on fraudsters’

use of this available limit. Kundu et al. [29] suggested a

method to understand the transaction sequence by using the

model of Hidden Markov and the K-Clustering Model.

Based on the cardholder’s spending behavior, the proposed

model created clusters for low, medium, and high spending

amounts. It has been demonstrated that the model’s out-

comes speed up fraudulence detection.

The class imbalance problem, which has drawn con-

siderable interest from the various application fields of

machine learning-based classification approaches, is the

primary obstacle to developing a prediction model for

CCFD [30, 31]. To address the unbalanced data, many

approaches have been developed in different domains.

Huang et al. [32] used deep learning to handle the imbal-

anced data in face analysis. They have handled this prob-

lem using a cost-sensitive approach and class resampling

technique. In [33], Ouyang et al. proposed a framework for

oil spill problems. The authors have proved that the

imbalanced dataset problem decreases the learning model’s

performance. Yang et al. [34] introduced a Sample Subset

Optimization technique that handles the class imbalance

distribution problem in Bioinformatics applications using

ensemble learning. Sun et al. [35] created the EUS-Bag

fitness function, an evolutionary under-sampling method

based on a bagging ensemble framework. The PSOAANN

approach, a hybrid of Particle Swarm Optimization and

Auto-Associative Neural networks, was proposed by

Kamaruddin and Ravi [36]. Wei et al. [37] presented an

efficient solution to the unbalanced data issues for online

credit card fraud detection.

3 Materials and methods

3.1 Resampling techniques

The resampling approach is a popular method for handling

incredibly imbalanced datasets. Resampling approaches

come in two varieties: the undersampling technique

removes certain samples from the majority class (blue

color data) the oversampling technique adds more exam-

ples from the minority class (orange color data), as

demonstrated in Fig. 3.

3.1.1 Oversampling techniques

3.1.1.1 Random oversampling technique (ROS) To

address the issue of class imbalance, ROS [39] is a useful

and widely used oversampling method. ROS methodology:

duplicate samples from minority classes that are chosen at

random. Then, while training the machine learning models,

combine this new sample with the original data. The

original minority dataset is partially recreated using this

random oversampling technique, which increases the

likelihood that the model will overfit.

3.1.1.2 Synthetic minority oversampling technique
(smote) Smote [40] is common for class imbalance

problems. This resampling technique uses synthetic data

points existing created by interpolating new instances

between available data points of the minority class. The

K-Nearest Neighbors (KNN) algorithm is used to construct

the interpolation of the instances of synthetic data. The

KNN selects new minority class data points according to

the requirements of synthetic data instances, and then adds

them to the original dataset. The Smote technique will

perform efficiently. In this case, the size of the datasets is

small. But, when the size of datasets is large. The process

will not function effectively, and creating more synthetic

data points will need more calculation time.

3.1.1.3 Adaptive synthetic sampling (AdaSyn) Adaptive

oversampling is a technique used in [41]. It is suggested to

avoid the limitations of Smote technique. These limitations

occur while creating the synthetic data samples. Smote

technique may make it more likely that data points may

overlap. In AdaSyn oversampling approach, the synthetic

data instances are produced using the density distribution

of the minority class. AdaSyn enhances the imbalanced

dataset by rebalancing it and reducing the learning bias.

3.1.2 Undersampling techniques

3.1.2.1 Random undersampling (RUS) RUS is the most

popular and effective resampling technique for class-im-

balanced datasets [42]. Although the RUS is quicker than

other resampling methods, it causes losing-out valuable

data. Therefore, the RUS method decreases the perfor-

mance of the classification algorithm while learning.

Neural Computing and Applications

123

4 The proposed hybrid resampling
techniques

4.1 Oversampling followed by undersampling

4.1.1 ROS followed by RUS

To balance the class distribution of a dataset, this approach

employs a hybrid resampling strategy that combines ran-

dom oversampling (ROS) and random undersampling

(RUS). The algorithm is fed four parameters: X, PRUS,
PROS, and Nmin. X is the original dataset, which includes

samples from both the majority and minority classes. PRUS
is the proportion of RUS that defines how many samples

from the majority class are deleted. The percentage of ROS

that decides how many minority class samples will be

replicated is known as PROS. The number of minority class

samples in X is denoted by Nmin.

The algorithm is divided into two steps: oversampling and

undersampling. The technique creates NROS new minority

class samples in the oversampling stage by randomly picking

and duplicating Nmin samples. By multiplying Nmin by PROS,

NROS is calculated. The additional samples are saved in an

array SR before being added toX to create a new dataset SROS.

The approach removes NRUS majority class samples from

SROS during the undersampling step by randomly picking and

deleting Nmaj samples. By increasing Nmaj by PRUS, we get

NRUS. In SROS, Nmaj is the number of majority class samples.

The array S (ROS? RUS), which is the algorithm’s final output.

Algorithm 1 ROS ? RUS

4.1.2 Smote followed by RUS

To deal with imbalanced data, this algorithm is a hybrid

sampling technique that combines oversampling (SMOTE)

and undersampling (RUS) methods. The algorithm aims to

improve classification model accuracy by generating a

more representative dataset for both classes. It employs

SMOTE to increase the diversity and density of the

minority class, and RUS to reduce the majority class’s

noise and redundancy. The algorithm creates a new dataset

called SSmote, which contains more instances of the

minority class than the previous dataset, X, by combining it

with the synthetic set S. After that, Ns = Nmaj * PR

instances from the majority class in SSmote are chosen at

random and removed from the dataset. These instances are

saved to the final resampled dataset, a new array

S(Smote ? RUS). The output of the algorithm is

S(Smote ? RUS), which has a more evenly distributed

class distribution than X.

Algorithm 2 Smote ? RUS

4.1.3 AdaSyn followed by RUS

To deal with imbalanced data, is a hybrid sampling tech-

nique that combines the AdaSyn and RUS algorithms. The

pseudocode begins by calculating the number of synthetic

Neural Computing and Applications

123

data samples required for the minority class. Then, for each

instance of the minority class Xi, it locates its K nearest

neighbors of the same class and computes a ratio Ri that

measures how difficult it is to learn Xi based on how many

of its neighbors are members of the majority class. First,

applying AdaSyn that creates the synthetic data instances

using the by selecting one of the K neighbors Xsi at ran-

dom and interpolating between Xi and Xsi with a uniform

random factor, then combines with the original dataset X to

form the new dataset SAdaSyn, which contains more instan-

ces of the minority class than before. Following that, using

RUS, it selects Ns = Nm * P instances at random from the

majority class in SAdaSyn and deletes them from the dataset.

Algorithm 3 AdaSyn ? RUS

Neural Computing and Applications

123

4.2 Undersampling followed by oversampling

4.2.1 RUS followed by ROS

This hybrid between undersampling techniques (RUS) then

Oversampling technique (ROS). First, the number of

instances to be deleted from the majority class is calculated

as NRUS = Nmaj * PRUS. It chooses NRUS instances at ran-

dom from the majority class in X and deletes them from the

dataset. It saves these deleted instances to a new array

SRUS, which contains fewer instances of the majority class

than previously. Then, the number of instances to be

duplicated from the minority class is calculated as NROS-

= Nmin * PROS. It chooses NROS instances at random from

the minority class in SRUS and duplicates them in the

dataset. It saves the duplicated instances to a new array

SROS, which contains more instances of the minority class

than previously. Finally, it combines SRUS and SROS to

create the final resampled dataset S(RUS? ROS).

Algorithm 4 RUS ? ROS

4.2.2 RUS followed by smote

Is a hybrid method for dealing with imbalanced datasets in

machine learning. To balance the class distribution, it

combines random under-sampling (RUS) and synthetic

minority over-sampling technique (SMOTE). First, RUS:

To begin, the algorithm reduces the size of the majority

class by a percentage determined by PR. It creates a subset

SRUS by randomly selecting samples from the majority

class until the number of samples reaches Ns, which is

calculated as a percentage of the original majority class

size. Then (SMOTE): For each minority class sample in

SRUS, the algorithm finds the minority class’s K nearest

neighbors. Then, by interpolating between the minority

sample and its neighbors, it generates new synthetic sam-

ples. PS percent of SMOTE determines the number of new

samples to be created. Bringing RUS and SMOTE toge-

ther: Combining the under-sampled majority class dataset

SRUS with the over-sampled minority class dataset SSmote

yields the final resampled dataset S(RUS1Smote).

Algorithm 5 RUS ? Smote

4.2.3 RUS followed by AdaSyn

Another hybrid method for dealing with imbalanced data-

sets in machine learning, is Algorithm 6. To balance the

class distribution, it employs a combination of Random

Under-Sampling (RUS) and Adaptive Synthetic Sampling

(AdaSyn).

RUS: The algorithm begins by reducing the size of the

majority class by a percentage defined by P. It creates a

subset SRUS by randomly selecting samples from the

majority class until the number of samples reaches Ns,

Neural Computing and Applications

123

which is calculated as a percentage of the original majority

class size.

(AdaSyn): Based on a given parameter b, which repre-

sents the intended balanced level, the algorithm determines

how many synthetic samples must be created for the

minority class. The algorithm locates K nearest neighbors

for each minority class sample in SRUS and calculates a

ratio Ri, which indicates how many of the neighbors are

members of the majority class. After normalization, the

ratio Ri is used to calculate the number of synthetic sam-

ples needed for each minority sample. The minority sample

and one of its randomly selected neighbors from the

minority class are interpolated to create the synthetic

samples. Integrating AdaSyn and RUS: The under-sampled

majority class dataset SRUS and the over-sampled minority

class dataset AdaSyn are combined to create the final

resampled dataset S(RUS? AdaSyn).

Algorithm 6 RUS ? AdaSyn

Neural Computing and Applications

123

4.3 Oversampling followed by oversampling

4.3.1 ROS followed by smote

This approach helps to improve classifier performance on

imbalanced datasets by increasing the diversity and repre-

sentation of the minority class. To balance the class dis-

tribution, it combines Random Over-Sampling (ROS) and

Synthetic Minority Over-Sampling Technique (SMOTE).

ROS: The algorithm begins by increasing the size of the

minority class by a percentage determined by PROS. It

draws samples from the minority class at random and

duplicates them to form a subset SR until the number of

samples reaches NROS, which is calculated as a percentage

of the original minority class size.

(SMOTE): The algorithm finds K nearest neighbors from

the minority class for each minority class sample in SROS,

which is the union of the original dataset X and the over-

sampled subset SR. Then, by interpolating between the

minority sample and its neighbors, it generates new synthetic

samples. PSpercent ofSMOTEdetermines the numberofnew

samples to be created. Combining the over-sampled minority

class dataset SROS with the over-sampled minority class

dataset SSmote yields thefinal resampleddatasetS(ROS1 Smote).

Algorithm 7 ROS ? Smote

4.3.2 ROS followed by AdaSyn

The following algorithm implements the ROS ? AdaSyn

combination, It combines Random Over-Sampling (ROS)

and Adaptive Synthetic Sampling (AdaSyn) to balance the

class distribution. First, increasing the minority class size

by a percentage determined by PROS. It draws samples from

the minority class at random and duplicates them to form a

subset SR until the number of samples reaches NROS,

which is calculated as a percentage of the original minority

class size. Then using AdaSyn, based on a given parameter

b, which represents the intended balanced level, the algo-

rithm determines how many synthetic samples must be

created for the minority class. The method locates K

nearest neighbors for each minority class sample in SROS,

which is the union of the original dataset X and the over-

sampled subset SR. It then computes a ratio Ri, which

indicates the proportion of neighbors that are members of

the majority class. After normalization, the ratio Ri is used

to calculate the number of synthetic samples needed for

each minority sample. The minority sample and one of its

randomly selected neighbors from the minority class are

interpolated to create the synthetic samples. to create the

synthetic data instances based on the minority class density

distribution.

Combining ROS and AdaSyn: The over-sampled

minority class dataset S, which includes both duplicated

and synthetic samples, is combined with the original

dataset X to create the final resampled dataset

S(ROS1 AdaSyn).

Neural Computing and Applications

123

Algorithm 8 ROS ? AdaSyn

Neural Computing and Applications

123

4.3.3 Smote followed by AdaSyn

Is a hybrid method for dealing with imbalanced datasets in

machine learning. The following description for each

phase:

4.3.3.1 Synthetic minority over-sampling technique
(SMOTE) The algorithm determines K nearest neighbors

from the minority class for each minority class sample in

the original dataset X. Next, by interpolating between the

minority sample and its neighbors, it creates new synthetic

samples. PS percent of SMOTE determines how many new

samples need to be created. SSmote is created by com-

bining the original dataset X with the oversampled

minority class dataset S.

4.3.3.2 Adaptive synthetic sampling (AdaSyn) Based on a

given parameter {\, which represents the intended balanced

level, the algorithm determines how many synthetic

samples must be generated for the minority class. The

algorithm locates K nearest neighbors for each minority

class sample in SSmote and calculates a ratio Ri, which

indicates how many of the neighbors are members of the

majority class. After normalization, the ratio Ri is used to

calculate the number of synthetic samples needed for each

minority sample. The minority sample and one of its ran-

domly selected neighbors from the minority class are

interpolated to create the synthetic samples.

4.3.3.3 Combining SMOTE and AdaSyn The over-sampled

minority class dataset S, which is made up of both syn-

thetic samples produced by SMOTE and AdaSyn, is

combined with the original dataset X to create the final

resampled dataset S(Smote1AdaSyn).

Fig. 4 The main steps of the

client–server process

Table 1 Overview of the dataset obtained from Kaggle

Total dataset #Fraud #Not fraud Label not fraud Label fraud

284,807 492 284,315 0 1

Neural Computing and Applications

123

Algorithm 9 Smote ? AdaSyn

Neural Computing and Applications

123

5 The proposed federated learning model

All banks will first agree on a standard fraud detection

global model (the model’s architecture, activation function

in each hidden layer, loss function, etc.). The existence of

heterogeneity may lead to the misconvergence of the global

model. Therefore, the proposed model requires handling

the skewed data. The unbalanced data problem leads to the

learned classifier identifying most of the fraud transactions

as genuine ones. As a result, solving the unbalanced data

issue is now a necessary step before developing a global

model for fraud detection. Thus, the federated learning

performance that is affected by statistical heterogeneity in

the real-world scenario has been improved.

The proposed global model learns the fraud detection

algorithm with the training data that is provided on its local

database. Firstly, it handles the skewed data and normalizes

the features in the appropriate interval. It then runs a neural

network classification technique with an optimizer to

obtain the optimal learning model parameters (gradients).

Finally, it sends the gradients to the server. The combined

global model has detected more fraud than each bank

independently, even when the dataset is not shared. Fig-

ure 4 illustrates the main steps for the client–server

process.

6 Experimental results

In this section, the impact of individual and hybrid

resampling strategies on the dataset of credit card fraud

detection is compared. Different classification methods,

including DT; GaussianNB; RF; KNN, and Logistic

Regression. The federated learning model has been built

over multiple frameworks to preserve data security and

privacy challenges.

The experiments in this work have been done using

Python programming language (Python 3). In this work, we

utilized open-source tools Scikit learn (1.1.3), pandas

(1.4.4), NumPy (1.22.3), matplotlib (3.5.3), TensorFlow

federated (0.17.0), PyTorch (1.2.0), and Imblearn (0.9.1) in

this work. The experiment was carried out using a desktop

computer with an Intel core i7 1.80 GHz CPU, 16GB of

RAM, and Windows 10 64-bit operating system.

6.1 Dataset

The Kaggle dataset [43] used in this research contains

actual but anonymous credit card transactions performed

by European cardholders. The dataset includes 284,807

transactions made by credit card in September 2013 days.

There is no missing data, and only 492 of the 284,807

transactions are fraudulent, resulting in a heavily skewed

Table 2 Comparison results of common machine learning classifiers after applying resampling techniques on credit card dataset

Resampling Method Model Accuracy Precision Recall F1 Score Loss Computation Time (Second)

ROS Random forest 99.99 0.9999 1.0 0.9999 0.0016 1090

Logistic regression 94.57 97.44 0.9155 0.9440 1.872 32

KNN 99.96 0.9993 1.0 0.9996 0.0111 754

Decision tree 99.98 0.9996 1.0 0.9998 0.0068 84

GaussianNB 91.48 0.9708 0.8553 0.9094 2.940 8

Smote Random forest 99.98 0.9997 1.0 0.9998 0.0036 2240

Logistic regression 94.51 0.9730 0.9156 0.9434 1.895 34

KNN 99.91 0.9983 1.0 0.9991 0.0289 814

Decision tree 99.82 0.9975 0.9989 0.9982 0.0597 270

GaussianNB 91.43 0.9723 0.8530 0.9087 2.956 6

AdaSyn Random forest 99.98 09997 1.0 0.9998 0.0039 2683

Logistic regression 89.78 0.9076 0.8857 0.8966 3.528 40

KNN 99.91 0.9982 1.0 0.9991 0.0295 821

Decision tree 99.86 0.9979 0.9994 0.9986 0.0452 345

GaussianNB 73.32 0.9267 0.5064 0.6549 9.214 10

RUS Random forest 93.91 0.9763 0.8993 0.9355 2.102 6

Logistic regression 94.34 0.9660 0.9166 0.9402 1.952 3

KNN 94.49 0.9935 0.8939 0.9405 1.90 8

Decision tree 91.01 0.9109 0.9207 0.9065 3.103 3

GaussianNB 91.44 0.9593 0.8595 0.9056 2.953 2

Bold values indicate the best model

Neural Computing and Applications

123

Table 3 Comparison results of common machine learning classifiers after applying resampling techniques on credit card dataset

Resampling Method Model Accuracy Precision Recall F1

score

Loss Computation time

(second)

ROS ? RUS Random forest 99.98 0.9995 1.0 0.9997 0.0052 166

Logistic

regression

98.60 0.9822 0.8621 0.9182 0.4815 12

KNN 99.81 0.9945 1.0 0.9972 0.0624 132

Decision tree 99.87 0.9961 1.0 0.9980 0.0439 12

GaussianNB 93.39 0.9444 0.8519 0.8958 2.281 3

RUS ? ROS Random forest 99.89 0.9977 1.0 0.9988 0.0368 15

Logistic

regression

95.05 0.9739 0.9201 0.9461 1.707 3

KNN 98.65 0.9742 0.9980 0.9860 0.4636 19

Decision tree 99.06 0.9805 1.0 0.9901 0.3214 3

GaussianNB 92.12 0.9656 0.8638 0.9117 2.718 2

Smote ? ROS = = ROS ? Smote Random forest 99.98 0.9997 1.0 0.9998 0.0036 2083

Logistic

regression

94.51 0.9730 0.9156 0.9434 1.895 23

KNN 99.91 0.9983 1.0 0.9991 0.0289 768

Decision tree 99.82 0.9975 0.9989 0.9982 0.0597 247

GaussianNB 91.43 0.9723 0.8530 0.9087 2.956 6

RUS ? Smote Random forest 98.89 0.9949 0.9830 0.9889 0.3804 43

Logistic

regression

94.66 0.9732 0.9186 0.9451 1.842 6

KNN 98.39 0.9707 0.9979 0.9841 0.5556 42

Decision tree 97.20 0.9640 0.9807 0.9722 0.9660 11

GaussianNB 91.28 0.9725 0.8496 0.9086 3.008 8

Smote ? RUS Random forest 99.98 0.9997 0.9999 0.9998 0.0039 3007

Logistic

regression

94.51 0.9730 0.9156 0.9434 1.895 27

KNN 99.91 0.9982 1.0 0.9991 0.0296 754

Decision tree 99.82 0.9974 0.9990 0.9982 0.0603 246

GaussianNB 91.44 0.9723 0.8530 0.9088 2.956 6

AdaSyn ? ROS = = = ROS ? AdaSyn Random forest 99.99 0.9998 1.0 0.9999 0.0017 1027

Logistic

regression

94.61 0.9747 0.9159 0.9444 1.867 25

KNN 99.96 0.9993 1.0 0.9996 0.0111 756

Decision tree 99.98 0.9996 1.0 0.9998 0.0059 75

GaussianNB 91.47 0.9708 0.8552 0.9093 2.943 6

RUS ? AdaSyn Random forest 93.18 0.9471 0.9153 0.9301 2.352 5

Logistic

regression

94.05 0.9642 0.9134 0.9372 2.052 3

KNN 94.20 0.9813 0.8995 0.9379 2.002 7

Decision tree 90.00 0.8854 0.9180 0.8995 3.453 3

GaussianNB 90.14 0.9594 0.8306 0.8899 3.403 2

AdaSyn ? RUS Random forest 99.98 0.9997 1.0 0.9998 0.0004 2504

Logistic

regression

89.78 0.9077 0.8858 0.8966 3.527 42

KNN 99.91 0.9982 1.0 0.9991 0.0301 785

Decision tree 99.87 0.9980 0.9993 0.9987 0.0437 308

GaussianNB 73.32 0.9268 0.5064 0.6549 9.214 8

Bold values indicate the best model

Neural Computing and Applications

123

dataset. Furthermore, it has 30 features, only two knowns,

namely the transaction amount and time. See Table 1.

6.2 Results and discussion

In this section, performance metrics, including precision,

recall, accuracy, loss, F1-measure, and total computational

time have been discussed to ensure the effectiveness of all

used classifiers in conjunction with Resampling techniques.

For accuracy evaluation, the machine learning classifica-

tion techniques and CNN classifier have been adopted for

comparison. The comparative results have been done by

using (80:20) training–testing ratio displayed that the.

6.2.1 Machine learning classifier with data balancing
techniques

This section shows the experimental results of the indi-

vidual and hybrid resampling techniques in conjunction

with the common machine learning classifiers.

Table 2 shows that Smote with RF has the best result

according to Accuracy, F1-score, and Loss but is the worst

according to Time Computation. Therefore, ROS with DT

is the best according to time computation and almost per-

formance parameters. Then, hybrid resampling techniques

were proposed to obtain more effective results, as shown in

Table 3. This table shows that Oversampling, followed by

Oversampling and Oversampling, followed by Undersam-

pling in combination with RF classifier, is the best

resampling strategy for class imbalance issues in all hybrid

resampling methods.

Regarding each classifier’s precision for various

resampling methods, see Table 3. ROS ? RUS; ROS ?

Smote, and ROS ? AdaSyn routinely outperform the rest

of these methods. Among machine learning classifiers, RF

and DT have attained higher precision values.

The tribble equal operation that used in Table 3 means

that the results of applying Smote then ROS as the same

ROS then Smote.

For more reliability, the proposed hybrid approach is

compared with many of the previous works, as shown in

Tables 4 and 5. Wherever the proposed hybrid resampling

technique is better than the previous works according to the

performance measures.

The tribble equal operation that used in Table 5 means

that the results of applying AdaSyn then ROS as the same

ROS then AdaSyn.

In Table 4, the (80:20) distribution showed better per-

formance for all common classifiers within the same data

distribution. Table 5 shows that the proposed hybrid

Table 4 Comparison between

previous work [3, 44–47] and

our work

Reference Training and testing NB SVM KNN RF DT LR

[3] (2011) – – 93.8 – 96.2 – 94.7

[44] (2012) – 96.04 – – 91.09 – –

[45] (2016) – 94.10 94.17 – 95.81 95.19 –

[46] (2017) (66: 34) 97.69 – 97.92 – – –

[46] (2017) (90: 10) 97.52 – 97.15 – – –

[47] (2018) (90: 10) 97.56 97.19 98.56 98.57 – –

[47] (2018) (66: 34) 97.70 97.39 97.97 98.25 – –

[47] (2018) (75: 25) 97.46 95.04 97.55 97.7 – –

[47] (2018) (80: 20) 97.80 97.46 98.16 98.23 – –

AdaSyn ? ROS (our work) (80: 20) 91.47 – 99.96 99.99 99.98 94.61

Table 5 Comparison between

Ata‘s work [47] and our work
Resampling technique Performance measures of (80:20) data distribution

Classifier Accuracy Precision Recall

Under-sampling [7] NB 90.97% 96.55% 85.53%

SVM 92.51% 94.18% 91.01%

KNN 92.89% 97.00% 88.78%

RF 93.02% 97.87% 89.03%

AdaSyn ? ROS = = = ROS ? AdaSyn NB 91.47% 97.08% 85.52%

RF 99.99% 99.98% 100%

LR 94.61% 97.47% 91.59%

KNN 99.96% 99.93% 100%

DT 99.98% 99.96% 100%

Neural Computing and Applications

123

oversampling technique (AdaSyn ? ROS) is better than

the individual undersampling techniques for different

classifiers.

Cross-validation is a very useful statistical approach for

evaluating machine learning models several times to detect

overfitting. In this study, k-fold cross-validation has been

used. Grid search cross-validation method selected k = 10,

on the given scale, our study will predict the highest

accuracy, especially for RF with most resampling tech-

niques. The cross-validation mean values of our study are

compared with the previous work [48], which presents the

Cross-Validation mean values obtained by each classifier

for different resampling techniques. The outcomes of

Tomeklinks (TMLK), ROS, and SMOTE techniques are as

follows (0.964, 0.970, and 0.973). In our study. Among all

resampling techniques, ROS and ROS ? AdaSyn tech-

niques have achieved excellent results. Among classifiers,

RF has achieved higher mean values (0.9999). Table 6

presents the Cross-Validation mean values acquired by

each classifier for various resampling approaches.

Each classifier’s overall evaluation time includes both

the training and testing phases. Table 7 shows the total time

of our study. This table shows that the total time of the

previous work [48] is better than our study because this

work used PCA as a preprocessing step. Due to a large

amount of data, RF takes longer when combined with

oversampling techniques. Although undersampling tech-

niques save time, they may result in underfitting.

Finally, the proposed hybrid resampling techniques

within machine learning classifiers outperformed the indi-

vidual resampling technique.

6.2.2 CNN classifier with data balancing techniques

The following is the structure of a CNN used to detect

credit card fraud:

A vector of attributes that characterize each transaction

is taken by the input layer. After applying 28 filters in the

first convolutional layer, an activation function known as a

rectified linear unit (ReLU) is applied. From the data, this

layer extracts low-level information like transaction fre-

quency or spending trends. 32fliter is applied by the second

convolutional layer, and then there is another ReLU acti-

vation function.

After applying a 64-filter in the third convolutional

layer, there is another ReLU activation function. From the

data, this layer extracts higher-level traits like anomalies

and outliers. The max pooling layer reduces the dimen-

sionality of the second layer’s output. This layer aids in the

reduction of overfitting and the enhancement of general-

ization. The flatten layer transforms the max pooling

layer’s output into a one-dimensional vector that can be fed

into a fully connected layer.

The output of the flatten layer is applied to the fully

connected layer, which then performs a linear transfor-

mation followed by a dropout operation. The dropout

operation, with a probability of 0.5, randomly sets some of

the units to zero, which also helps to prevent overfitting

and improve robustness. The output layer takes the fully

connected layer’s output and applies the sigmoid function

to generate a probability distribution over two classes:

fraud or not.

This section shows the experimental results of the

individual and hybrid resampling techniques in conjunction

with the CNN classifiers. The hybrid resampling tech-

niques performed very well on machine learning classifiers.

On another hand, the individual resampling techniques

performed better with CNN classifier than the hybrid

resampling techniques, as shown in Table 8. Among all

resampling techniques, ROS and Smote have achieved

higher accuracy values (99.93%).

For a fair comparison, the same hyper-parameters for

previous works are used. There is no existing work that

Table 6 Cross-validation mean values for our study

Classifier/

Resampling

techniques

SMOTE AdaSyn ROS RUS ROS

? RUS

RUS

? ROS

Smote

? ROS

RUS

? Smote

Smote

? RUS

AdaSyn

? ROS

RUS

? AdaSyn

AdaSyn

? RUS

Decision

tree

0.9982 0.9986 0.9998 0.9101 0.9987 0.9906 0.9982 0.9720 0.9982 0.9998 0.900 0.9987

GaussianNB 0.9143 0.7332 0.9148 0.9144 0.9339 0.9212 0.9143 0.9128 0.9144 0.9147 0.9014 0.7332

KNeighbors 0.9991 0.9991 0.9996 0.9449 0.9981 0.9865 0.9991 0.9839 0.9991 0.9996 0.9420 0.9991

Random

forest

0.9998 0.9998 0.9999 0.9391 0.9998 0.9989 0.9998 0.9889 0.9998 0.9999 0.9318 0.9998

Logistic

regression

0.9451 0.8978 0.9457 0.9434 0.9860 0.9505 0.9451 0.9466 0.9451 0.9461 0.9405 0.8978

Bold values indicate the best model

Neural Computing and Applications

123

provides the same level of efficiency. For class imbalance

problems, the smote resampling strategy works best with

CNN. To ensure this result, the Smote ? CNN is compared

to two prior studies [48, 49], the results of which are pre-

sented in Tables 9 and 10.

Table 9 compares the proposed Model (Smote ? CNN)

to the baseline state-of-the-art models [49]. We can see that

the proposed Model (Smote ? CNN) outperforms the

state-of-the-art ensemble. In terms of the majority of the

criteria, particularly the F1 measure, LSTM, GRU, and

ensemble model ‘ are used as ensemble techniques. The

model reached its greatest AUC-ROC score, demonstrating

the ability of the proposed model to distinguish between

fraudulent and normal transactions as well as its ability to

work with extremely unbalanced data.

The Smote ? CNN algorithm outperformed all com-

pared models, as shown in Table 11. In Table 12, the CNN

model has been built with the same framework architecture

of the previous work in addition to the resampling step

using Smote resampling techniques. The simulation results

showed that the proposed Smote ? CNN model is better

than the traditional CNN model. CNN classifier with data

balancing techniques.

6.2.3 Federated learning model with different batch sizes
over several frameworks

A federated learning model has been built with different

batch sizes to select the optimal number of batch sizes for

the CCFD problem, as shown in Table 11; then, this model

runs on different environments, and these results are pre-

sented in Tables 12 and 13.

As per the graphical representation of these boxplots,

shown in Figs. 5, 6, 7, 8, 9, for different classification

techniques (machine learning classifier and CNN classifier)

in combination with different resampling (individual and

hybrid) techniques. For each resampling technique, the

performance of all used classifiers is presented.

Tables 12 and 13 present the performance of the tradi-

tional model of Smote ? CNN on Tensorflow and PyTorch

environments, respectively. The accuracy of the traditional

model on TensorFlow is better than PyTorch for all opti-

mizers. However, it costs more computational time. On the

side, the performance of the federated model of Smote ?

CNN on Tensorflow federated and PyTorch-pysyft envi-

ronments, respectively. The accuracy of the federated

model on PyTorch-pysyft is better than TensorFlow fed-

erated for most optimizers. But it requires more computa-

tional time.

The federated learning results are applied using 100

iterations, and Adam optimizer has used learning rate 0.1,

SGD 0.1, and MSGD 0.1 with 0.2 as moment value.

Ta
bl
e
7

T
o
ta
l
ti
m
e
v
al
u
es

fo
r
im

b
al
an
ce
d
m
et
h
o
d
s
o
f
o
u
r
st
u
d
y

C
la
ss
ifi
er
/
re
sa
m
p
li
n
g
te
ch
n
iq
u
es

S
m
o
te

A
d
aS
y
n

R
O
S

R
U
S

R
O
S

?
R
U
S

R
U
S

?
R
O
S

S
m
o
te

?
R
O
S

R
U
S

?
S
m
o
te

S
m
o
te

?
R
U
S

A
d
aS
y
n
?

R
O
S

R
U
S

?
A
d
aS
y
n

A
d
aS
y
n
?

R
U
S

D
ec
is
io
n
tr
ee

2
7
0

3
4
5

8
4

3
1
2

3
2
4
7

1
1

2
4
6

7
5

3
3
0
8

G
au
ss
ia
n
N
B

6
1
0

8
2

3
2

6
8

6
6

2
8

K
N
ei
g
h
b
o
rs

8
1
4

8
2
1

7
5
4

8
1
3
2

1
9

7
6
8

4
2

7
5
4

7
5
6

7
7
8
5

R
an
d
o
m

fo
re
st

2
2
4
0

2
6
8
3

1
0
9
0

6
1
6
6

1
5

2
0
8
3

4
3

3
0
0
7

1
0
2
7

5
2
5
0
4

L
o
g
is
ti
c
re
g
re
ss
io
n

3
4

4
0

3
2

3
1
2

3
2
3

6
2
7

2
5

3
4
2

B
o
ld

v
al
u
es

in
d
ic
at
e
th
e
b
es
t
m
o
d
el

Neural Computing and Applications

123

Figures 10, 11, 12 demonstrate the performance of the

single CNN model with different optimization techniques

whereas Fig. 10 displays how the Adam optimizer

outperforms other optimizers, especially on tensorflow

platform. Tensorflow platform is faster than Pytorch plat-

form with all optimization techniques as shown in Fig. 13.

In Fig. 12, the Adam optimizer achieves the minimum loss

value on Pytorch platform.

Figures 13, 14, 15 demonstrate the performance of the

federated model with different optimization techniques

whereas Fig. 13 displays how MSGD optimizer outper-

forms other optimizers. TensorFlow federated platform is

faster than Pytorch_pysyft platform with all optimization

techniques as shown in Fig. 14. In Fig. 15, the MSGD

optimizer achieves the minimum loss value on Tensorflow

Federated platform.

Table 8 Comparison results of CNN classifier

Resampling method Model Accuracy Precision Recall F1 score Loss Computation time (s

ROS CNN 99.93 0.8082 0.8027 0.8054 0.0230 259

Smote 99.93 0.8263 0.8095 0.8178 0.0214 255

AdaSyn 99.91 0.7283 0.8027 0.7637 0.0295 250

RUS 98.33 0.0843 0.8775 0.1538 0.5736 17

ROS ? RUS 99.84 0.5294 0.8571 0.6545 0.0537 52

RUS ? ROS 99.92 0.7439 0.8299 0.7845 0.0270 145

Smote ? ROS = = ROS ? Smote 99.92 0.7579 0.8095 0.7828 0.0266 257

RUS ? Smote 98.77 0.1127 0.8911 0.2001 0.4232 20

Smote ? RUS 99.90 0.7034 0.8231 0.7586 0.0311 253

AdaSyn ? ROS = = = ROS ? AdaSyn 99.92 0.7393 0.8299 0.7820 0.0274 251

RUS ? AdaSyn 98.35 0.0846 0.8707 0.1543 0.5671 16

AdaSyn ? RUS 99.92 0.7530 0.8299 0.7896 0.0262 258

Table 9 Comparison between previous work [49] and our work

Model Precision Recall F1 Score AUC-ROC

GRU 0.8626 0.7208 0.7792 0.8602

LSTM 0.8575 0.7408 0.7866 0.8702

Ensemble model ‘ 0.9569 0.6674 0.7813 0.8337

Smote ? CNN 0.8263 0.8095 0.8178 0.9378

Bold values indicate the best model

Table 10 Comparison between previous work [48] and our work

Model Framework-architecture Hyper-parameters Accuracy Categorical prediction accuracy (%) False Positive FCR (%)

Legitimate Fraudulent

CNN [48] Output-layer 2Classes; Softmax 99.89 99.82 82 17 82

Loss function MAE

Optimizer SGD

Epochs 10

Splitting ratio 80:20

Smote ? CNN Output-layer 2Classes; Softmax 99.93 99.78 83 17 84

Loss function MAE

Optimizer SGD

Epochs 10

Splitting ratio 80:20

Bold values indicate the best model

Neural Computing and Applications

123

Table 11 Results of different

batch sizes of

FL_SMOTE ? CNN

FL_Smote ? CNN

Optimizer ADAM

Accuracy Precision Recall F1 Score Loss Time

Batch size = 32 92.14 0.8799 0.9759 0.9254 0.2191 421

Batch size = 64 92.15 0.8708 0.9865 0.9255 0.2215 291

Batch size = 128 89.21 0.8341 0.9789 0.9007 0.3344 266

Batch size = 256 80.91 0.7271 0.9855 0.8368 0.5602 206

Bold values indicate the best model

Table 12 Comparison results

between the traditional model

and federated model over

TensorFlow environment

Traditional_Smote ? CNN

Framework Tensorflow

Optimizer ADAM SGD MSGD

Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Single Model 99.92 0.0266 266 99.72 0.0933 295 99.46 0.0334 266

Federated_Smote ? CNN

Framework Tensorflow Federated

Optimizer ADAM SGD MSGD

Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Federated Model 92.15 0.2215 291 91.97 0.3098 355 92.93 0.2120 284

Bold values indicate the best model

Table 13 Comparison results

between the traditional model

and federated model over the

PyTorch environment

Traditional_Smote ? CNN

Framework Pytorch

Optimizer ADAM SGD MSGD

Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Single Model 99 0.0090 15 97 0.1099 12 97 0.1072 14

Federated_Smote ? CNN

Framework Pysyft

Optimizer ADAM SGD MSGD

Accuracy Loss Time Accuracy Loss Time Accuracy Loss Time

Federated Model 93 0.2658 488 92 0.2245 401 90 0.3229 444

Bold values indicate the best model

Neural Computing and Applications

123

Fig. 5 BoxPlot of accuracy

Fig. 6 BoxPlot of precision

Fig. 7 BoxPlot of recall

Neural Computing and Applications

123

Fig. 8 BoxPlot of f1-score

Fig. 9 BoxPlot of loss

Fig. 10 Accuracy of the single

model across tensorflow and

pytorch platforms

Neural Computing and Applications

123

Fig. 11 Time of the single

model across tensorflow and

pytorch platforms

Fig. 12 Loss of the single

model across tensorflow and

pytorch platforms

Fig. 13 Accuracy of the

federated model with different

optimizers

Neural Computing and Applications

123

7 Conclusion

A federated learning approach for CCFD is presented in

this research to address data privacy concerns. Addition-

ally, hybrid resampling methods were suggested as a way

to address imbalanced class issues and enhance classifica-

tion efficacy. The outcomes of the experiments demon-

strated that when combined with the proposed federated

learning approach. Notably, the Smote resampling tech-

nique is the best with the proposed CNN model, and

AdaSyn ? ROS is the best with the DT model according to

all performance parameters and computational time. The

accuracy of the federated model on PyTorch-pysyft (93%,

92%, 90%) is better than TensorFlow federated (92.15%,

91.97%, 92.93%) for Adam, SGD and MSGD optimizers,

respectively. However, it costs more computational time.

Because of the dataset’s limitations, this should be

approached with caution. The best accuracy for the RF,

LR, KNN, DT, and Gaussian NB classifiers is 99,99%;

94,61%; 99.96%; 99,98%; and 91,47%, respectively,

according to the experimental data. The comparative

results reveal that the RF outperforms the NB, RF, DT, and

KNN with high performance characteristics (accuracy,

recall, precision, and f score). With all resampling

approaches, RF achieves the lowest loss levels.

In future works, the performance of the proposed fed-

erated learning model will be improved by integrating

more advanced optimization techniques. Also, privacy

protection of gradients (learning parameters) that may lead

to model poisoning by injecting malicious data will be

handled. The federated model’s communication and

aggregation updates will be optimized in a secure and

scalable way.

Fig. 14 Time of the federated

model with different optimizers

Fig. 15 Loss of the federated

model with different optimizers

Neural Computing and Applications

123

Funding Open access funding provided by The Science, Technology

& Innovation Funding Authority (STDF) in cooperation with The

Egyptian Knowledge Bank (EKB). The authors received no specific

funding for this study.

Data availability Data are available from the authors upon reasonable

request.

Declarations

Conflict of interest The authors declare that they have no conflicts of

interest to report regarding the present study.

Ethical approval This article does not contain any studies with human

participants or animals performed by any of the authors.

Informed consent Informed consent was obtained from all individual

participants included in the study.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. NilsonReport.Card Fraud Losses Reach $27.85 Billion (2019)

https://nilsonreport.com/mention/407/1link/ Accessed 16 Jun

2021

2. Makki S et al (2019) An experimental study with imbalanced

classification approaches for credit card fraud detection. IEEE

Access 7:93010–93022

3. Awoyemi JO, Adetunmbi AO, Oluwadare SA (2017) Credit card

fraud detection using machine learning techniques: a comparative

analysis. In: 2017 international conference on computing net-

working and informatics (ICCNI). IEEE. Johar Town, Lahore,

Punjab 54770, Pakistan pp 1–9

4. Dornadula VN, Geetha S (2019) Credit card fraud detection using

machine learning algorithms. Procedia Comput Sci 165:631–641

5. Naik H, Kanikar P (2019) Credit card fraud detection based on

machine learning algorithms. Int J Comput Appl 182(44):8–12

6. Khare N, Sait SY (2018) Credit card fraud detection using

machine learning models and collating machine learning models.

Int J Pure Appl Math 118(20):825–838

7. Banal A, Garg H (2021) An efficient techniques for fraudulent

detection in credit card dataset: a comprehensive study. In: IOP

conference series: materials science and engineering. Mathura,

India, 1116(1). IOP Publishing

8. Zhang W, Weishan T et al (2021) Dynamic fusion-based feder-

ated learning for COVID-19 detection. IEEE Internet Things J

8(21):15884–15891

9. Lian X et al. (2017) Can decentralized algorithms outperform

centralized algorithms? a case study for decentralized parallel

stochastic gradient descent. Adv Neural Inf Process Syst 30

10. Abd Elrahman SM, Abraham A (2013) A review of class

imbalance problem. J Netw Innov Comput 1(2013):332–340

11. Bejjanki G, Jayadev G, Narsimha G (2018) Class processing and

systems. Springer

12. Liu Y, Li X, Chen X, Wang X, Li H (2020) High-performance

machine learning for large-scale data classification considering

class imbalance. Sci Program

13. Zheng W, Jin M (2020) The effects of class imbalance and

training data size on classifier learning: an empirical study. SN

Comput Sci 1(2):1–13

14. Sweers T, Heskes T, Krijthe J (2018) Autoencoding credit card

fraud. Bachelor Thesis

15. Xuan S et al. (2018) Random forest for credit card fraud detec-

tion. In: 2018 IEEE 15th international conference on networking,

sensing, and control (ICNSC). IEEE, China

16. Singh G et al (2012) A machine learning approach for detection

of fraud based on svm. Int J Sci Eng Technol 1(3):192–196

17. Sonawane YB, Gadgil AS, More AE, Jathar NK (2016) Credit

card fraud detection using clustering based approach. Int J Adv

Res Innov Ideas Educ 2(6)

18. Xie X et al. (2018) Generative adversarial network-based credit

card fraud detection. In: International conference in communi-

cations, signal processing and systems. Springer, Singapore

19. Niu X, Wang L, Yang X (2019) A comparison study of credit

card fraud detection: supervised versus unsupervised. arXiv

preprint arXiv:1904.10604

20. Fahmi M, Hamdy A, Nagati K (2016) Data mining techniques for

credit card fraud detection: empirical study. Sustain Vital Tech-

nol Eng Inf, pp 1–9

21. Chen K, Seshadri S, Zhang LJ (2019) Big Data–BigData 2019:

8th international congress, Held as part of the services conference

federation, SCF 2019, San Diego, CA, USA, June 25–30, Pro-

ceedings. Vol. 11514. Springer

22. Y. Wensi et al. (2019) Ffd: a federated learning based method for

credit card fraud detection. J Big Data, LNCS 11514, pp 18–32

23. Suvarna R, Meena Kowshalya A (2020) Credit card fraud

detection using federated learning techniques. J Web Eng Tech-

nol 7(3):356–367

24. Albertio C (2019) Towards Efficient and Privacy-preserving

Federated Deep Learning. In: International conference on science

and technology on communication security laboratory, 978-I-

5386–8088- 9/19@IEEE

25. Lim WYB et al (2020) Federated learning in mobile edge net-

works: a comprehensive survey. IEEE Commun Surv Tutor

22(3):2031–2063

26. Yao X, Huang T, Wu C, Zhang R, Sun L (2019) Towards faster

and better federated learning: a feature fusion approach. In: 2019

IEEE international conference on image processing (ICIP). IEEE,

Taipei, Taiwan, pp175–195

27. Panigrahi S et al (2009) Credit card fraud detection: a fusion

approach using Dempster-Shafer theory and Bayesian learning.

Inf Fusion 10(4):354–363

28. Khan MZ, Pathan JD, Ahmed AHE (2014) Credit card fraud

detection system using hidden markov Model and K-clustering.

Int J Adv Res Comput Commun Eng 3(2):5458

29. Kundu A, Panigrahi S, Sural S, Majumdar AK (2009) Blast-ssaha

hybridization for credit card fraud detection. IEEE Trans

Dependable Secure Comput 6(4):309–315

30. Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F

(2011) A review on ensembles for the class imbalance problem:

bagging-, boosting-, and hybrid-based approaches. IEEE Trans

Syst Man Cybern Part C Appl Rev 42(4):463–484

31. Japkowicz N, Shah M (2011) Evaluating learning algorithms: a

classification perspective. Cambridge University Press

Neural Computing and Applications

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://nilsonreport.com/mention/407/1link/

32. Huang C, Li Y, Loy CC, Tang X (2019) Deep imbalanced

learning for face recognition and attribute prediction. EEE Trans

Pattern Anal Mach Intell 42(11):2781–2794

33. Ouyang X, Chen Y, Wei B (2017) Experimental study on

unbalanced data problem using an oil spill training data set. J Adv

Math Comput Sci 21:1–9

34. Yang P et al (2013) Sample subset optimization techniques for

imbalanced and ensemble learning problems in bioinformatics

applications. IEEE Trans. Cybern. 44(3):445–455

35. Sun B, Chen H, Wang J, Xie H (2018) Evolutionary under-

sampling-based bagging ensemble method for imbalanced data

classification. Front Comput Sci 12(2):331–350

36. Kamaruddin S, Ravi V (2016) Credit card fraud detection using

big data analytics: use of PSOAANN based one-class classifica-

tion. In: Proceedings of the international conference on infor-

matics and analytics, Pondicherry India, pp 1–8

37. Wei W et al (2013) Effective detection of sophisticated online

banking fraud on extremely imbalanced data. World Wide Web

16(4):449–475

38. N.D. Stout. Undersampling and Oversampling Statistics Visual

Example. Pinterest. https://www.pinterest.it/pin/

514958538641697615/

39. Ling CX, Li C (1998) Chenghui. Data mining for direct mar-

keting: Problems and solutions. In: Kdd, pp 73–79

40. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002)

SMOTE: synthetic minority over-sampling technique. J Artif

Intell Res 16:321–357

41. He et al H (2008) AdaSyn: adaptive synthetic sampling approach

for imbalanced learning. In: 2008 IEEE international joint

conference on neural networks (IEEE world congress on com-

putational intelligence). IEEE, Hong Kong, pp.1322–1328

42. Fernández A et al (2018) SMOTE for learning from imbalanced

data: progress and challenges, marking the 15th anniversary.

J Artif Intell Res 61:863–905

43. Machine Learning Group—ULB (2018) Credit card fraud

detection anonymized credit card transactions labeled as fraud-

ulent or genuine. https://www.kaggle.com/mlg-ulb/

creditcardfraud

44. Bhattacharyya S et al (2011) Data mining for credit card fraud: a

comparative study. Decis Support Syst 50(3):602–613

45. Alowais MI, Soon LK (2012) Credit card fraud detection: Per-

sonalized or aggregated model. In: 2012 third FTRA international

conference on mobile, ubiquitous, and intelligent computing.

IEEE, Vancouver, Canada, pp 114–116

46. Kültür Y, Mehmet UC (2017) Hybrid approaches for detecting

credit card fraud. Expert Syst 34(2):e12191

47. Ata O, Hazim L (2020) Comparative analysis of different ˘dis-

tributions dataset by using data mining techniques on credit card

fraud detection. Tehnicki vjesnik 27(2):618–626

48. Singh A, Ranjan RK, Tiwari A (2021) Credit card fraud detection

under extreme imbalanced data: a comparative study of data-level

algorithms. J Exp Theor Artif Intell 34:1–28

49. Forough J, Momtazi S (2021) Ensemble of deep sequential

models for credit card fraud detection. Appl Soft Comput

99(2):106883

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

https://www.pinterest.it/pin/514958538641697615/
https://www.pinterest.it/pin/514958538641697615/
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud

	Federated learning model for credit card fraud detection with data balancing techniques
	Abstract
	Introduction
	Motivation and contributions

	Related work
	Materials and methods
	Resampling techniques
	Oversampling techniques
	Random oversampling technique (ROS)
	Synthetic minority oversampling technique (smote)
	Adaptive synthetic sampling (AdaSyn)

	Undersampling techniques
	Random undersampling (RUS)

	The proposed hybrid resampling techniques
	Oversampling followed by undersampling
	ROS followed by RUS
	Smote followed by RUS
	AdaSyn followed by RUS

	Undersampling followed by oversampling
	RUS followed by ROS
	RUS followed by smote
	RUS followed by AdaSyn

	Oversampling followed by oversampling
	ROS followed by smote
	ROS followed by AdaSyn
	Smote followed by AdaSyn
	Synthetic minority over-sampling technique (SMOTE)
	Adaptive synthetic sampling (AdaSyn)
	Combining SMOTE and AdaSyn

	The proposed federated learning model
	Experimental results
	Dataset
	Results and discussion
	Machine learning classifier with data balancing techniques
	CNN classifier with data balancing techniques
	Federated learning model with different batch sizes over several frameworks

	Conclusion
	Open Access
	References

